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ABSTRACT 

Hormone replacement therapy (HRT), used by many women to alleviate menopausal symptoms 

such as hot flashes and mood swings, is often a combination of hormones such as estrogens, 

progesterone, and conjugated equine estrogens (CEE), extracted from the urine of pregnant 

mares. Previous studies have found positive correlations between estradiol and cellular 

protection, but recent research has concluded CEE provide less protective mechanisms as 

compared to endogenous hormones. This research sought to compare the effects of estrogen 

treatments (single and combined estrogen) on viability when astrocytes were induced with 

stressors (epinephrine, cortisol, and low oxygen concentration). Cultured human astrocytes were 

treated with 17p-estradiol and equilenin, either alone or in combination. Following estrogen 

treatments, astrocytes were induced with stressors, and an MTT assay was used to measure cell 

viability. Estradiol was expected to provide the most protection as a single hormone treatment 

for all three stressors. Higher concentrations of equilenin either alone or in combination with 

estradiol yielded significantly lower cell viability following epinephrine and cortisol stressors. 

There was no viability difference found in astrocytes stressed with low oxygen concentration. 

The analysis of this research helped to elucidate the relative protective effects of two forms of 

estrogens. Future research on estrogen binding using primary human astrocytes and neurons 

would help further understand the neurological effects of estrogens neurologically. The 

implications of this study suggest HRT could be detrimental to neurological cells, and these 

negative effects are dose dependent. 

INDEX WORDS: Estradiol, astrocytes, equilenin, cell viability, glial cells, neuronal protection, 
menopause, estrogen effects, Premarin, protective effects of estrogens 
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INTRODUCTION 

Estrogens 

Estrogens mediate many functions in the body and regulate homeostasis. Women who 

have a reduced estrogen production in the perimenopausal, menopausal, and postmenopausal 

stages suffer associated symptoms from decreased estrogen production in the body such as 

fatigue, mood swings, osteoporosis, hot flashes and night sweats (Brunner et al. 2010). 

Supplemental estrogens and hormones are often prescribed to relieve these symptoms. These 

combinations frequently include estradiol, estrone (found in higher concentrations of pregnant 

women), and progesterone. Estradiol includes two common subtypes found in many 

supplemental estrogens which are 17a-estradiol and 17(3-estradiol. Estradiol is produced within 

the follicle of the female ovaries. It plays a major role in the reproductive organs of women as 

well as the lining of the fallopian tubes, vagina, cervical glands, endometrium, and maintaining 

oocytes in the ovaries (Finstad et al. 2009). In premenopausal women, estradiol levels decrease 

from 15-350 pg/mL to often less than 10 pg/mL in postmenopausal. 17a-estradiol and 17(3- 

estradiol compounds only differ slightly in position of a hydroxyl group and these compounds 

have similar change during menopause (Rotti et al. 1975). Estrone levels also drop significantly 

as women age. This drop in estrone can range from 17-200 pg/mL in premenopausal women to 

7-40 pg/mL in postmenopausal women (Rotti et al. 1975). Since most hormones maintain 

homeostasis in the body, fluctuations of estrogens and progesterone such as in menopause often 

leads to hot flashes, night sweats and mood changes (Kardong 2015; Regidor 2014). 



www.manaraa.com

2 

Evidence of Neuroprotection by Endogenous Estrogens 

In addition to alleviating menopausal symptoms, the clinical use of estrogen also offers 

cellular protection when exposed to toxins such as glutamate and (1-amyloid protein (Zhao and 

Brinton 2006). Estradiols and estrone showed significant protection in rat neurons when induced 

with various stressors (Zhao and Brinton 2006). Estradiols, specifically 17|3-estradiol, contribute 

to the regulation of brain activity, structural proteins synthesis, estrogen receptors, and enzymes 

(Tozzi et al. 2015). Much research has confirmed a positive correlation between estrogens and 

memory (Tozzi et al. 2015; Foy et al. 2000). 

The protective effects of estradiol were seen in a study conducted by Mosquera et al. 

(2014). This research tested the neuronal protective effects of estradiols and tamoxifen, an 

estrogen receptor mixed agonist/antagonist. Rats were induced with a spinal cord injury seven 

days after their ovaries were removed. Ovariectomy allowed researchers to quantify levels of 

hormones being tested and to assure accurate results related to the effects of hormones on spinal 

cord injury recovery. The hormones were administered to the rats orally at a concentration of 3 

mg in food pellets. Oxidative stress was then induced. Locomotion was measured at 7, 14, 21, 

and 28 days post injury. Improved rates of locomotion were seen at days 21 and 28 for the rats 

receiving tamoxifen. However, locomotion improved in rats receiving estradiol at all four times 

measured. The conclusion of this study implies that both hormones could potentially be used as a 

long-term treatment in the recovery from spinal cord injury and as a general neurological 

protective agent. 

Traumatic brain injuries result in permanent neuron damage which often leads to death of 

an individual. If a patient survives a traumatic brain injury, there is often permanent damage 
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inhibiting completion of daily tasks (Gatson et al. 2012). After a traumatic brain injury, nerve 

cells undergo oxidative stress and inflammation which may ultimately lead to apoptosis. Women 

are more likely to recover from a traumatic brain injury leading researchers to investigate 

hormones as an effective source of neuron protection (Gatson et al. 2012). Research 

investigating estrogen’s effect on neuronal recovery after a traumatic brain injury was conducted 

by Gatson et al. (2012). Male rats were induced with a traumatic brain injury by a small incision 

in the skull. The rats were then given 0.5 mg/kg of estrone. Brain matter and lesions were then 

analyzed. The results of this study indicated a significant protective effect on the neurons in the 

parietal cortex and hippocampus in the groups that were given the estrone. Thus, this research 

suggests estrone may be useful in protecting neurons of individuals who experience traumatic 

brain injury 

Johnsen and Murphy (2011) dissected male and female rat brains to collect cortical 

neurons. Cultured neurons were treated with 17p-estradiol and isoflurane prior to oxygen and 

glucose deprivation. Isoflurane is a halogenated ether used as an inhaled anesthesia. A gas 

exchange system was used to administer isoflurane to cells at 0% and 3% for one hour. 

Afterwards, cells were returned to normal conditions and deprived of oxygen and glucose for 

two hours the following day. Isoflurane protected male and female neurons from oxygen and 

glucose deprivation. Estradiol alone protected female neurons from oxygen and glucose 

deprivation. Seventeen P-estradiol was found to increase viability of cells. In addition, female 

neurons were found to be less affected by stressors compared to the male neurons. 

There has been conflicting research on the effects of estrogen use. Marriott and Wenk 

(2004) suggested the timing of taking estrogens is essential to the protection of neurological 

diseases. For instance, taking estrogens before the onset of Alzheimer’s or dementia may protect 
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neurons from deteriorating (Marriott and Wenk 2004). In addition to timing, correct dosage that 

mimics the natural cycle of fluctuating hormones is essential and may slow down the progression 

of Alzheimer’s disease in postmenopausal women (Marriott and Wenk 2004). Research has 

found estradiol, specifically 17 [3-estradiol, provided significant protection to neurons after rats 

were induced with spinal cord injuries and global cerebral ischemia (Mosquera et al. 2014; Raval 

et al. 2009). Less is known about nonendogenous estrogens, and some research suggests the use 

of any estrogen imposes more risk on an individual. Brunner et al. (2010) treated women with 

CEEs in a one year trial. Although women who consumed CEEs showed a reduction in 

vasomotor symptoms and vaginal dryness, associated symptoms returned after stopping CEEs. 

The Women’s Health Initiative study was a set of clinical trials and was an observational study 

that began in 1991 and lasted for 15 years with over 161,800 overall healthy postmenopausal 

participants. The study found participants taking estrogens with progestin had increased 

incidences of coronary heart disease, stroke, and pulmonary embolism compared to participants 

that did not take the HRT. This research was stopped early due to the increase incidence of 

invasive breast cancer among participants. 

Hormone Replacement Therapy 

Hormone replacement therapy (HRT) is a combination of estrogens and progestin that is 

used to relieve menopausal symptoms such as night sweats, hot flashes, bone loss, and mood 

swings by providing hormones which are no longer produced at the same level in the recipient’s 

body. HRT first became available in 1940, and it is still an approved method used today by 

many women. Although some estrogen replacements can be purchased over-the-counter, HRT is 

often prescribed by a physician in the oral form. Common HRTs include Prempro (0.3 mg to 

0.625 mg conjugated estrogens and 1.5 mg to 5 mg medroxyprogesterone from Wyeth 
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Pharmaceuticals), progestogen (ranges from 100 mg to 400 mg from in the pill form and 4% to 

8% in gels from Elfin Pharmaceuticals), and Premarin (conjugated estrogens 0.3 mg to 0.625 mg 

administered orally for three weeks with one week off from Pfizer Pharmaceuticals). The latter 

includes ten estrogen compounds, some of which are outlined in the following section (Zhao and 

Brinton 2006). Connelly et al. (2000) measured the prevalence and duration of women taking 

HRT from 1990 to 1995. They found menopausal women ages 50 to 54 years were the greatest 

users of HRT (24%). Less than 5% of women 75 years and older used HRT. Many women 

discontinued HRT after a year. 

Once HRT is taken, hormones enter the body and bloodstream where they then act on 

corresponding receptors. Health benefits such as prevention of osteoporosis and improved sleep 

leading to an overall higher quality of life are linked with estrogens present in HRT. Yet, it is 

common for vasomotor side effects associated with menopause and post-menopause to return 

after stopping the HRT as these hormones will decrease in the body once no longer consumed 

regularly (Brunner et al. 2010). Additionally, risks such as incidences of cancers increase as one 

takes HRT (Hendrix et al. 2006). 

Conjugated Equine Estrogens 

In addition to progestins, estradiols, and estrone, conjugated equine estrogens (CEE) are 

also commonly used in HRT (Zhao and Brinton 2006). CEEs include several estrogens that are 

not endogenous to humans. The composition of Premarin includes the following, listed in order 

of decreasing concentration: sodium estrone sulfate, sodium equilin sulfate, sodium 17a- 

dihydroequilin sulfate, sodium 17a-estradiol sulfate, sodium 8,9-dehydroestrone sulfate, sodium 

equilenin sulfate, sodium 17p-dihydroequilin sulfate, sodium 17a-dihroequilenin sulfate, sodium 
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17p-estradiol sulfate, sodium 17(3-dihydroequilenin sulfate, and sodium 8, 9-dehydroestradiol 

sulfate (Figure la) (Zhoa and Brinton 2006). Equilenin, also known as 6,8-didehydroestrone and 

estra-l,3,5,6,8-pentaen-3-ol-17-one, has a molecular formula of CisHisCb whereas estradiol has 

six more hydrogens making its chemical composition C18H24O2 (Figure 1). Estrone has a 

chemical composition of C18FI22O2 (Figure lc). Although estrone, 17P-estradiol and equilenin are 

all present in Premarin, the relative amount of each differs. Estrone accounts for approximately 

49% while equilenin accounts for 2.2%, and 17(3-estradiol only accounts for 0.9% of the estrogen 

concentrations. Similar to Premarin, Prempro is composed of a combination of estrogens 

comprised of 20% conjugated estrogens and 80% medroxyprogesterone (pregn-4-ene-3, 20- 

dione, 17-acetyloxy-6-methyl-6a). Synthetic steroid hormones, such as progestins, are also 

commonly used. In addition to equilenin being a nonendogenous estrogen as opposed to 

estradiol, equilenin has a double bond present on its compound whereas estradiol does not. 

Equilenin can bind to estradiol receptors. However, the affinities differ. Enzymes to process 

CEEs are absent in the human body. Thus, CEEs stay longer in the body as opposed to human 

estrogens (Hendrix et al 2006). Estrone, estradiols, and progestins have been found to provide 

protection to neurons in individuals who have had a stroke (Hsieh et al. 2012). Yet, CEEs have 

been found to offer less protection, and studies have indicated CEEs may carry more risk 

compared to endogenous estrogens (Brunner et al. 2010; Grimes and Hughes 2015). 

Chemical structures of estrogens may have a role in the protective effects they offer. 

Certain estrogens in Premarin provide a mechanism of protection for neurons when induced with 

stress. However, not all estrogens in Premarin provided protection (Zhao and Brinton 2006). 

This study used P-amyloid, a toxin associated with the brains of Alzheimer’s patients. The sixth 

leading cause of death, Alzheimer’s disease results in loss of neurons and degeneration of brain 
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matter. When |3-amyloid misfolds, aggregates and toxic plaques form which are called P-amyloid 

plaques. These plaques can lead to neuronal cell death (Pujol-Pina et al. 2015). Recent studies 

have found a positive relation between oxidative stress and P-amyloid protein (Porcellotti et al. 

2015). This is an important implication suggesting further research in protecting the neurons 

from oxidative stress thereby preventing P-amyloid plaques and ultimately inhibiting 

Alzheimer’s disease is needed. Zhao and Brinton (2006) tested different concentrations of 

estrogens as possible neuron protectors. Basal forebrain neurons were collected at embryotic day 

18. Neurons were treated with CEEs. While the combination CEE was found to protect the 

neurons, the researchers wanted to determine which of the hormones in the CEE were most 

effective at providing neuronal protection toward the neurons. They repeated their study with 

known quantities of the specific estrogens. The estrogens used included those that are produced 

naturally in the ovaries of humans and nonendogenous estrogens which were the following: 

estrone, 17a-estradiol, 17P-estradiol, equilin, 17a-dihydroequiline, 17p-dihydroequiline, 

equilenin, 17a-dihydroequilenin, 17p-dihydroequilenin, and dehydroesterone. The neurons were 

first treated with the estrogens and then exposed to the P-amyloid protein. Although all the 

hormones provided some level of protection to the neurons, 17p-estradiol, estrone, and 

dehydroestrone provided the most neuronal protection. Thus, two endogenous estrogens (17p~ 

estradiol and estrone) and one nonendogenous (dehydroestrone) which is found in horses like 

equilenin, provided a significant protection to neurons. 

Risks Associated with Estrogens 

The benefits and risks of hormones to the body are essential to understand when one is 

choosing a hormone replacement therapy. Brunner et al. (2010) analyzed over 10,000 

postmenopausal women prior to and following hormone replacement therapy. A decrease in 
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postmenopausal symptoms, such as vasomotor symptoms, were reported by women taking HRT. 

However, women taking HRT also reported breast tenderness (Brunner et al. 2010). 

Additionally, side effects were likely to significantly increase once the women discontinued the 

use of CEE (Brunner et al. 2010). This is an important aspect to consider when choosing a 

hormone replacement therapy since HRT should not be used long-term due to the increased risk 

of breast, endometrial, ovarian, and uterine cancers (Tozzi et al. 2015). The Women’s Health 

Initiative study concluded postmenopausal women who had long-term exposure to hormone 

replacement therapy which included estrogens and progestin had a 26% higher incidence of 

breast cancer as well as an increased risk of heart attacks and associated cardiovascular health 

problems. This study was stopped early due to the incidence of increased breast cancer in 

women. Participants taking HRT also had an increased with of cardiovascular disease. However, 

this study indicated the combination of equine estrogens with progesterone lowered the risk of 

colorectal cancer. Additionally, younger women were less likely to have adverse side effects in 

this study. Harlan et al. 1993 used 689 women of different races in their study and found white 

women were more likely to have estrogen receptor-positive tumors as opposed to African 

American women. Thus, demographics is an important aspect to consider which plays a 

significant role as well as the health and age of the individual taking estrogens. Although there is 

conflicting research about the risks associated with estrogen’s effect, many research still suggests 

estrogen use may be beneficial when taken at the proper time and proper dosage. 

The role of various stressors used to evaluate the effect of estrogens has not been widely 

studied and the few studies that have been done show conflicting results. For instance, Grimes 

and Hughes (2015) found cellular protection when rat astrocytes were stressed with hydrogen 

peroxide whereas Zhao and Brinton (2006) found selective estrogens in Premarin provide 
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protection when rat neurons were stressed with (3-amyloid protein. The actual mechanism of 

estrogen that takes place to provide protection is unknown. However, receptor blocking research 

may offer insight. Additionally, different stressors such as hydrogen peroxide, cortisol, 

epinephrine, and low oxygen concentration may elicit different effects in cells. Less research is 

available pertaining to astrocytes stressed with epinephrine and cortisol. However, previous 

research has found some stressors elicit other stressors. Chen at al. (2014) found hypoxic 

environments to increase the release of cortisol resulting in damage to astrocytes and cerebral 

edema. Below is a review of three main stressors that are typically used in testing the efficacy of 

estrogen on cell growth and proliferation. 

Stressors 

Epinephrine 

Epinephrine and norepinephrine are produced in many organisms and categorized as both 

neurotransmitters and hormones. They act as neurotransmitters when released in the brain and 

act on receptors in the brain. When referred to as hormones, they are released from a neuron and 

travel in the bloodstream where they bind to receptors on other cells. Epinephrine primarily 

comes from the adrenal medulla whereas norepinephrine primarily comes from the brain. 

Dihydroxyphenylalanine (DOPA) is synthesized from tyrosine by DOPA decarboxylase. 

Dopamine-(3 hydroxylase synthesize dopamine resulting in norepinephrine. Phenylethanol amine 

N-methyl-transferase is the enzyme that synthesize epinephrine from norepinephrine (Purves et 

al. 2012). Structurally, epinephrine and norepinephrine are similar except epinephrine has an 

additional methyl group (Figure 2). When epinephrine is released, it binds to a class of G 

protein-coupled receptors known as adrenergic receptors causing various response in other cells 



www.manaraa.com

10 

(Strosberg 1993). Adrenergic receptors are divided into two main groups, a and (3 where they can 

then be further divided by subtypes (ai, a2, (3i, (32, P3). Adrenergic receptors often act in the brain, 

but they are also located throughout the body from the muscles in the eye to the urinary 

sphincters (Qin et al. 2015). Alpha receptors are located on the arteries, live cells, platelets, and 

blood vessels of smooth muscles. When epinephrine or norepinephrine is released, they bind to 

the alpha receptors in the arteries resulting in increased blood pressure due to a constriction in 

the arteries. Beta receptors are located on the heart and bronchioles of the lungs as well as 

arteries of skeleton muscles (Strosberg 1993). The autonomic nervous system (ANS), which 

consists of the sympathetic and parasympathetic nervous systems, is responsible for controlling 

the visceral motor response. The ANS regulates organs and bodily functions and the response is 

dependent upon which nervous system, sympathetic or parasympathetic, is activated. When the 

sympathetic nervous system is activated under conditions of stress, higher concentrations of 

epinephrine and norepinephrine are released (Liao et al. 2015). This state is commonly referred 

to as ‘fight-or-flight’ which is characterized by increased in blood pressure, heart rate, 

sticky/thick saliva, release of glucose, increased blood flow to skeletal muscles, and dilated 

pupils (Vasunilashom and Cohen 2014). Although both epinephrine and norepinephrine are 

needed in the body, overproduction of these catecholamines may lead to cell death due to 

extended oxidative stress encountered by the cells (Liao et al. 2015). Previous research has 

indicated over production of epinephrine and norepinephrine have a positive correlation with 

increasing tumors, spread and growth of cancers, damaging neurons resulting in neuronal 

diseases, and inducing neuronal cell death (Qin et al. 2015). 

It is expected there would be a higher production of epinephrine and norepinephrine 

when an individual is in a stressful situation since stress is positively correlated to these 
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catecholamines. One study showed the significant health factors an individual may suffer when 

activation of the sympathetic nervous system is extended (Teleger et al. 2015). This study 

consisted of 131 individuals (82 women and 49 men) with a variety of health conditions. The 

effects of induced sympathetic nervous system versus parasympathetic nervous system on the 

cardiovascular function were investigated. The researchers found a significant decrease in 

cardiovascular health in individuals by calculating heart rate variability and baroreflex sensitivity 

when the sympathetic nervous system was induced over an extended time (Teleger et al. 2015). 

Weiming et al. 1998 analyzed calcium influx, cytoplasmic and mitochondrial reactive 

oxygen species and found cultured hippocampal neurons had increased vulnerability when cells 

were exposed to catecholamines at concentrations of 10-200 pM. When catecholamines were 

combined with amyloid-(3-peptide, its detrimental effects to the cells increased. Neurons that 

received higher concentration (100-200pM) resulted in death. This study also found certain 

antioxidants counteracted the effects of catecholamines and amyloid-p-peptide such as vitamin 

E, glutathione, and propyl gallate. Thus, vitamin E, glutathione, and propyl gallate could 

potentially be used as protectors against the catecholamines as stressors. 

Liao et al. (2015) further demonstrated the risks associated with epinephrine and 

norepinephrine by testing catecholamine effects on the virus Enterovirus 71. The objective in the 

study was to assess the percent of cells infected with the virus before and after the cells were 

exposed to the catecholamines. A Flow Cytometry Assay using rabbit anti-al A ADR or P2-ADR 

and goat anti-rabbit antibodies was used to measure expression of adrenergic receptors in 

infected cells. The researchers found an increase percentage of viral-infected cells when the cells 

were treated with epinephrine and norepinephrine, indicating these catecholamines induced a 

negative stress on the cells where the healthy cells lost the ability to fight off the virus. 
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The impact of epinephrine and norepinephrine on stress is not confined to neuronal cells. 

Breast cancerous cells are also affected by levels of epinephrine and norepinephrine. One study 

tested the effects of these catecholamines on tumor progression and macrophages (Qin et al. 

2015). They found a significant increase in growth of cancerous tumors when induced with 

epinephrine and norepinephrine. This study also found increased levels of epinephrine and 

norepinephrine has a specific negative effect on the immune system. As these catecholamine 

concentrations increased, macrophages decreased significantly leaving the immune system less 

effective at fighting infections, pathogens, and diseases such as cancerous tumors. This research 

of catecholamines further explains why a progressive growth in the cancerous tumor was 

observed once epinephrine and norepinephrine were induced (Qin et al. 2015). 

The current study found it appropriate to use epinephrine as a stressor to astrocytes 

protected with and without estrogens to test the protected effects of different estrogens since 

much research correlates cellular stress/ death with high concentrations of epinephrine (Weiming 

et al. 1998; Qin et al. 2015). 

Cortisol 

A second stressor that is typically used in estrogen research is cortisol, a key regulator of 

stress response. Like epinephrine, higher concentrations are associated when individuals are 

under stressful conditions or in a stressful environment. Epinephrine and norepinephrine are first 

released followed by cortisol which effect last longer (Dindia et al. 2013). Cortisol consists of 

nine carbons, thirteen hydrogens, one nitrogen, and three oxygen atoms, and it is made when the 

hypothalamus senses a stressor (Figure 3). As a result, corticotropin releasing hormone 

stimulates the anterior pituitary gland to release ACTH molecules in the brain which travels to 
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the bloodstream. Cortisol production begins when ACTH reaches the adrenal cortex and 

stimulates cortisol (Mons and Beracochea 2016). The zona fasciculata of the adrenal cortex 

within the adrenal gland is where cortisol is formulated. Cortisol concentrations are typically 

highest early in the mornings and slowly decline throughout the day where concentrations are 

lowest in the evening and when one is sleeping. This pattern may be reversed for individuals 

who sleep during the day and are awake at late hours of the night. Cortisol levels typically range 

from 3 ud/dl to 20 ud/dl in a twenty-four hour timeframe (Dindia et al. 2013). 

Although these concentrations of cortisol release are in the normal range and thought to 

be harmless, high concentrations and prolonged release has been related to detrimental effects in 

astrocytes including an increase in oxidative stress and a decrease in cellular viability (Chen et 

al. 2014). Parkinson’s disease is characterized by chronic inflammation and an increase release 

of cortisol. This increase in cortisol release is thought to be related to dopamine neuron 

generation (Herrerero et al. 2015). 

On a larger scale, high concentrations of cortisol are known to interfere with cognitive 

function, increase one’s weight and blood pressure as well as increase the risk of certain diseases 

(Jackson et al. 2017; Cozma et al. 2017). One study tested the cortisol concentrations of 

prepubescent girls and included participants who were normal weight and obese. Scalp hair was 

chosen to analyze for cortisol levels rather than blood samples because hair provides an index of 

long-term circulating cortisol. Salivary samples were also collected from participants. The study 

concluded there was a positive correlation with high concentrations of cortisol in scalp hair 

samples and salivary samples of obese participants compared to normal weight participants 

(Papafotiou et al. 2017). 
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Additionally, Jackson et al. (2017) used human hairs to determine the amount of cortisol 

present and found a positive correlation between obesity and high concentrations of cortisol. 

Dindia et al. (2012) exposed rainbow trout cells to cortisol in vitro and found cortisol exposure 

impacted elasticity of hepatic plasma membranes, fluidity, and surface topography. Other 

research found hydrocortisone inhibited proliferation of human osteoblast cells (Tsunashima et 

al. 2011). 

Anoxia 

Low oxygen concentration, anoxia, is another source of stress cells in the brain can 

encounter; if this stress is extended, neuronal death will occur (Xie et al. 2014). Stroke victims 

suffer from low oxygen concentrations which can damage many organs and be detrimental if 

neurons are not able to get the oxygen needed to properly function. Strokes result from a clot, 

blockage, or rupture preventing the regular flow of oxygen in the body to neurons. As a result, 

neurons located in affected areas of the brain undergo anoxic stress and this affects surrounding 

tissues (Pabon et al. 2014). The amount of time the neurons are deprived of oxygen and an 

individual’s health are two factors that determine the level of neuronal damage and oxidative 

stress neurons encounter (Xie et al. 2014). The motor cortex controls the preparation and 

execution of motor control. Prior research illustrated progesterone and estrogens provided a 

protective mechanism for neurons when model strokes were induced (Yousuf et al. 2014). 

Strokes contribute to a number of deaths every year. If a stroke affects the motor cortex, 

neurons in this region of the brain would be damaged; thus, motor control would significantly 

decline (Bajaj et al. 2015). Individuals who survive a stroke often suffer permanent damage from 

free radicals due to anoxic stress such as inability to move limbs on one side of the body (Pabon 
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et al. 2014). The protective effects of ischemic post conditioning are essential for individuals 

who have suffered from a stroke to prevent damage to neurons and other vital cells as well as 

organs (Xie et al. 2014). Certain hormones such as 17p-estradiol and progesterone provided 

neuronal protection after an individual suffered from a stroke. In a study using middle-aged rats 

who suffered post-stroke brain infarction and functional deficits, different levels of progesterone 

(8 mg/kg, 16 mg/kg, and 32 mg/kg) were injected through the peritoneum after cerebral ischemia 

was induced at the right middle cerebral artery occlusion. Motor, sensory, and cognitive tests 

were used to determine recovery post-stroke during intervals up to 22 days. Their results 

indicated that all doses were effective at reducing the effects of ischemic infarct injury, but the 

rats who received 8 mg/kg of progesterone suffered from the least side effects (Yousuf et al. 

2014). 

Estrogens are known to have a positive role in the health of the cardiovascular system, 

but less is known about their effects and relation to ischemic strokes. A study was conducted that 

used 305 patients who were younger than 50 years old and suffered from an ischemic stroke. 

Blood tests were collected from patients and analyzed for hormone levels. The results indicated 

that lower levels of estradiols caused a significant increase in an individual’s risk of experiencing 

an ischemic stroke (Hsieh et al. 2012). In contradiction, the Women’s Health Initiative study 

found women taking HRT had higher incidences of cardiovascular diseases including strokes. 

Previous research has indicated neuronal protection after an acute stroke in both male and female 

rats when treated with estrogens during the therapeutic window period which is often three to six 

hours. However, this period may be extended for humans (Simpkins et al. 2004). Estrogen 

analogues were used to treat both male and female rats following induced ischemic stroke. The 

analogues reduced feminization but were still potent in neuron protection (Simpkins et al. 2004). 
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Since this research utilized both males and females, HRT may be beneficial to both men and 

women. Since previous research found estrogens to protect neurons and cortisol is known to 

affect neurons and astrocytes negatively, astrocytes were stressed with cortisol after cells were 

pretreated with estrogens to test the protective effects of different estrogens. 

The current research examined the effects on astrocytes when exposed to various 

stressors after being treated with a single estrogen or a combination of estrogens. The hormones 

used in this research included equilenin, 17P-estradiol, and a combination of the two. Analyses 

were conducted to determine if a certain estrogen treatment offered more protection to the human 

astrocytes compared to other treatments. 

Hypotheses 

1. ) The astrocytes treated with 17P-estradiol will have the most significant astrocyte 

protection for the stressors epinephrine or cortisol. Increased viability of astrocytes 

will be seen as concentrations of estradiol increases. 

2. ) The estrogen combination 17p-estradiol with equilenin will have greater cellular 

protection compared to cells treated with the single equilenin alone, but less cellular 

protection will be seen in the hormone combination compared to cells treated with 

17P-estradiol when the stressor is epinephrine or cortisol. 

This hypothesis therefore indicates the astrocytes treated with 17p-estradiol will have 

greater cell viability compared to cells, and cells treated with equilenin alone were 

expected to have lower cell viability 
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3. ) The estrogen treatment, 17p-estradiol, will provide more protection to astrocytes 

when the stressor is low oxygen concentration compared to equilenin treatments. 

Higher viability of astrocytes will be seen as concentrations of estradiol increases. 

4. ) The hormone combination, 17P-estradiol with equilenin will provide the cell with 

greater neuronal protection as opposed to the single equilenin treatment, but less 

cellular protection will be seen compared to the single 17p-estradiol which will have 

the highest cell viability when the stressor is low oxygen concentration. 

5. ) The cells treated with estrogens will have higher cell viability than the controls. 

METHODS 

Cell Culture 

Human astrocytes (cell line 132INI) were purchased from Sigma-Aldrich. These cells 

originated from a brain astrocytoma and have glial cell morphology. The cells were thawed and 

grown in a T-75 mL flask with Dulbecco’s Modified Eagle’s Medium (DMEM purchased from 

Sigma-Aldrich) supplemented with 10% fetal bovine serum (FBS), 5% antibiotic/antimycotic 

(Sigma-Aldrich), and 2 mM L-glutamine. The cells were grown in an incubator at 37°C and 10% 

carbon dioxide (Grimes and Hughes 2015). These conditions were used in all treatments unless 

otherwise noted. Cell growth was monitored under an inverted light microscope. Once 

approximately 80% confluency was reached, cells were subcultured using 0.25% trypsin-EDTA 

and plated in 96-well plates at a concentration of lxl06 cells/mL. A hemocytometer was used to 

assess viability using the Trypan Blue dye eye vision method. A 1:1 of cell suspension and 4% 

trypan blue was used to do this. Samples that contained more dyed cells indicated a higher 

concentration of cells, whereas clear samples indicated a low concentration of cells using the 
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hemocytometer. Each well in the 96-well plate contained 200 pL of media. Once plated in the 

wells, treatments began the next day. 

Estrogen Treatment 

Both stock estrogens (17p-estradiol and equilenin, Sigma-Aldrich) were stored at 4°C 

and prepared the same day of treatment. Serial dilutions in PBS were performed to dilute the 

stock estradiol and equilenin. Cells were pretreated with estrogens for one hour before stressor 

exposure. Estrogens used in this study included 17P-estradiol, equilenin, and a combination of 

the two. Cells were treated with estrogens varying in concentration from 10 nM to 10 pM (10 

nM, 100 nM, 1 pM, and 10 pM) (Grimes and Hughes 2015). Controls received the same volume 

of vehicle (phosphate buffer saline) as estrogen treatments. 

Preliminary research took place using a Muse Cell Analyzer to perform a flow cytometry 

assay to analyze cells. This machine uses a laser-based fluorescence detection which evaluated 

cellular parameters in order to deliver quantitative data on cells. After cells were cultured using 

both positive and negative controls, IX Assay Buffer was added to cells at lxlO6 cells/mL for 

incubation with Muse Oxidative Stress working solution. After cells were treated with the 

reagent, the cells were incubated for thirty minutes at 37°C. Cells were analyzed with an adjusted 

gateway (this was used as a baseline) to determine oxidative stress by measuring total cell count 

and percentage of reactive oxidative species. Results that were above this adjusted gateway were 

considered to be reactive oxidative species. Thus, these cells were considered to be under 

oxidative stress. The cell analyzer measured ROS positive species in percentages. The higher 

percentage of ROS positive cells, the more cells undergoing oxidative stress. 
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Epinephrine as a Stressor 

The first objective of this research was to determine if a single or combination of 

estrogens at various concentrations applied prior to 100 jiM epinephrine exposure affects 

astrocyte viability. Human astrocytes were cultured and plated in an incubator for twenty-four 

hours. They were then treated with 17P-estradiol or equilenin or a combination of the two at 

concentrations of OnM (controls), 10 nM, 100 nM, 1 pM, and 10 pM. After one hour estrogen 

exposure, the astrocytes were exposed to lOOpM epinephrine for one hour. Astrocytes received 

post-stressor treatment after epinephrine was removed and allowed to sit in estrogens until they 

were analyzed using a Muse Cell Analyzer for flow cytometry and an MTT assay the following 

day to detect cell viability, proliferation, and oxidative stress. 

Preliminary research was done to determine the optimal concentration of epinephrine to 

induce measurably oxidative stress in the cells. The trials included 1 pM, 10 pM, 100 pM and 1 

mM, and exposure time varied from one hour to two hours (Grimes and Hughes 2015). 

Following results of the initial study, 100 pM with an exposure time of one hour was determined 

to be the appropriate treatment used to induce oxidative stress analyzed by using the Muse Cell 

analyzer. The Muse Analyzer measured reactive oxidative species to determine cells under stress 

(Mao et al. 2004). This concentration of epinephrine, 100 pM, was also used for the MTT Assay. 

Following one hour pretreatment of estrogens, cells were exposed to 100 pM epinephrine 

for one hour. Media was then replaced to remove the stressor. Treated cells were retreated with 

estrogens as indicated above. Thus, treated cells (excluding controls) received estrogen pre- and 

post- stressor exposure. All cells were analyzed using an MTT Assay to measure cell viability 

consisting of seven trials at an absorbance of 570 nm to detect cell viability. 
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Cortisol as a Stressor 

Preliminary research was done to determine the optimal cortisol concentration to stress 

cells as indicated by decrease in viability. Cells exposed to stressor were compared to controls 

that did not receive the stressor. Concentrations included 10 nM, 100 nM, and 1 pM with 

exposure times of one hour, for hours, and twenty-four hours (Anacker et al. 2013; Tsunashima 

et al. 2011). One micro molar concentration of cortisol with an exposure time of one hour was 

determined to be the most consistent in achieving the best acute stress resulting in a decrease in 

cell viability. Cells were plated in 96-well plates and returned to the incubator at 37°C and 10% 

C02. 

The following day cells were pretreated with the estrogens and concentrations listed 

above for one hour. Afterwards, cells were exposed to 1 pM cortisol for one hour and then 

immediately analyzed for cell viability using an MTT assay consisting of seven trials at an 

absorbance of 570 nm to detect cell viability. 

To determine if a single or combination of estrogens at various concentrations applied 

prior to cortisol exposure affects astrocyte viability, human astrocytes were cultured and plated 

in an incubator for 24 hours. They were then treated with a single estrogen treatment of 17(3- 

estradiol or equilenin at concentrations of 0 nM (controls), 10 nM, 100 nM, 1 pM, and 10 pM. 

After one hour estrogen exposure, the astrocytes were exposed to 1 pM cortisol for one hour. 

Following stressor exposure, cells were analyzed using an MTT Assay to detect cell viability. 

Anoxia as a Stressor 

To determine if a single or combination of estrogens at various concentrations applied 

prior to anoxia exposure affects astrocyte viability, human astrocytes were cultured and placed in 
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the incubator for 24 hours at a standard air flow. Cells were treated with a single estrogen (1713- 

estradiol or equilenin) or a combination of the two for one hour. Following estrogen 

pretreatment, cells were exposed to a hypoxic environment for one hour at 37°C. An MTT Assay 

was conducted immediately after one hour hypoxic exposure consisting of six trials at an 

absorbance of 570 nm to detect cell viability. 

Cells were plated in 96-well plates and returned to the incubator at 37°C, 10% CO2, and 

standard air flow. Astrocytes were pretreated with the estrogens at varying concentrations listed 

above for one hour. The cells were then placed in an incubator at 37°C without air flow or CO? 

for one hour. The hypoxic condition of the incubator was achieved by lighting multiple matches 

until a flame was no longer produced which was an indication oxygen levels were lowered in the 

incubator (Johnsen and Murphy 2011). Immediately following one hour exposure to the hypoxic 

incubator, cells were analyzed using an MTT assay consisting of six trials at an absorbance of 

570 nm to detect cell viability. 

MTT Assay 

The MTT assay measures cell viability by assessing the rate of cellular metabolism using 

a color test. The MTT assay kit was purchased from Sigma-Aldrich (Stock No. TOX-1 and 

catalog No. M-5655 for kit components). The media in all wells was replaced with 100 pL 

media. Blanks served as controls and received the same volume of reagents and solutions as 

treatments. Ten microliters of an MTT reagent (3-4,5-dimethylthiazol-2-yl-2,5-diphenyl 

tetrazolium bromide), was added to each well to produce a final concentration of 10%. The MTT 

reagent is reduced by cellular oxidoreductase present in living cells and forms an insoluble 

formazan indicated by a purple color. The 96-well plate was then incubated for two hours at 
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37°C and 10% CO2. Following incubation, 100 pL of MTT Solubilization Solution was added to 

each well to dissolve the crystal in fonnazan product. A microplate spectrophotometer was used 

to measure absorbance at a wavelength of 570 nm. Higher absorbance values indicated higher 

cell viability when comparing treatments to controls. 

Statistical Analysis 

Statistical software including JMP (from SAS) and 17.0 SPSS were used to analyze data 

collected from the seven trials using epinephrine and cortisol as a stressor and the six trials using 

anoxia as a stressor. A two-way ANOVA was performed on the epinephrine and cortisol trials, 

which analyzed the effect of stressor, estrogen concentration, and estrogen concentration by 

stressor. A test for normal distribution was performed on data. If a significance was reported, 

data was log transformed and log transformed data was analyzed using a two-way ANOVA. If a 

significance was found after conducting a two-way ANOVA test, a Tukey’s Post-hoc test was 

performed to determine further information about the differences among the means across 

estrogen concentrations and presence/absence of stressor. A 95% confidence interval was used in 

this research. Thus, results that yielded p-values below 0.05 were considered significant. A one¬ 

way ANOVA was performed on data collected for the anoxia trials. In the epinephrine and 

cortisol trials, absorbance values obtained from the MTT assay were used as the dependent 

variable while estrogen concentrations and stressors were used as the independent variable. In 

the low oxygen trial, the dependent variable was absorbance values while the independent 

variable was estrogen concentrations. 
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RESULTS 

Data are expressed in Tables 1 through 3 from the two-way ANOVAs and one-way 

ANOVA. Data are reported as absorbance value averages +/- standard error. The parameters 

used for the two-way ANOVA are listed in Tables 1 and 2 with the results. The parameters used 

for the one-way ANOVA are listed in Table 3 with the results. 

Epinephrine 

Astrocytes were pretreated with estradiol, equilenin, or a combination of the two for one 

hour following exposure to 100 pM epinephrine for one hour. Afterwards, astrocytes received 

estrogens again and were analyzed for viability using an MTT assay the next day. A two-way 

ANOVA was used to analyze astrocyte viability. All data in data tables are expressed as average 

optical density values at 570 nm +/- S. E. There was no significant difference between stressed 

and unstressed cells in terms of absorbance recordings across all estradiol treatments (Table 1, 

p>0.05). However, there was an estrogen treatment effect found (Table 1, F=3.02, p=0.02). The 

Tukey post-hoc test indicated 1 pM estradiol treatment yielded a significantly lower absorbance 

compared to the control treatments (1.13 +/- 0.21 and 0.20 +/- 0.19, respectively; Figure 4a). 

There was no significant difference between stressed and unstressed cells in terms of absorbance 

readings across all equilenin treatments and the controls (p>0.005). However, there was an 

estrogen concentration effect found (Table 1, F=13.89, p<0.0001). The Tukey post-hoc test 

indicated 1 OpM equilenin treatment yielded a significantly lower absorbance from all other 

treatments (control, lOnM, lOOnM, and lpM; 0.164+/-0.07, 0.92+/-0.07, 0.68+/-0.08, 0.66+/- 

0.08, and 0.66+/-0.08, respectively; Figure. 4b). 
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There was no significant difference between stressed and unstressed in terms of viability 

measurements across all estradiol with equilenin treatments and the controls (p>0.005). 

However, there was an estrogen treatment effect (Table 1, F=7.66, pO.OOOl). The control 

treatment had a significantly high absorbance compared to the 1 OnM combination estrogen 

treatments 0.92+/- 0.08 and 0.57+/- 0.09, respectively. The combination of estrogen treatments at 

1 pM with and without stresses had a significantly lower absorbance compared to the control 

0.52+/-0.09. The control treatment yielded a significantly higher absorbance compared to the 

lOpM combination estrogen treatment 0.92+/-0.08 and 0.26+/-0.09, respectively. The lOpM 

combination estrogen treatment was also significantly lower in absorbance from the lOOnM 

combination estrogen treatment 0.26+/-0.09 and 0.63+/-0.09, respectively; Figure 4c). 

Cortisol 

Preliminary research took place using 10 nM, 100 nM, and 1 pM cortisol concentrations 

with exposure time of one hour, four hours, and twenty-four hours. Mean analysis of preliminary 

data helped draw the conclusion that 1 pM (average= 0.60) with an exposure time of 1 hour to 

astrocytes was the best treatment to use to lower cell viability (Figure 5). 

A two-way ANOVA was used to analyze astrocyte viability after cells were stressed with 

1 pM cortisol for one hour. All data are expressed as optical density values at 570 nm +/- S. E. 

Average absorbance values ranged from 0.82 to 0.53. There was no significant difference 

between stressed and unstressed estradiol treatments including controls. There was also no 

significant difference found across all estradiol treatments including controls. Thus, there was no 

estrogen effect (p>0.05; Figure 5a, Table 2, F=1.29, p=0.28). 
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There was no significance between stressed and unstressed equilenin treatments including 

controls. However, there was an estrogen concentration effect (table 2, F=4.01, pO.OOOl). The 

equilenin lOpM treatment, regardless of stressor, yielded a significantly lower absorbance value 

compared to the control, 10 nM, and 100 nM (0.448 +/-0.10, 0.712 +/-0.09, 0.684 +/- 0.120, 0.77 

+/-0.101 respectively; Figure 5b). The 1 pM and 10 pM equilenin treatments did not 

significantly differ (p>0.05). 

There was no significant difference between stressed and unstressed estradiol with 

equilenin treatments including controls (p>0.05). However, there was an estrogen concentration 

effect (Table 2, F=9.89, pO.OOOl). The control, 10 nM, 100 nM and 1 pM combination estrogen 

treatments did not significantly differ from one another (p>0.05; Figure 5c). However, the 10 pM 

combination estrogen treatment had a significantly lower absorbance from the control, 10 nM, 

100 nM and 1 pM treatments (0.227+/-0.092, 0.712 +/- 0.078, 0.721 +/- 0.098, 0.513 +/- 0.099, 

0.655 +/-0.092, respectively; Figure 5c). 

Oxygen 

A one-way ANOVA was used to analyze viability after the astrocytes were stressed in a 

hypoxic environment. All data are expressed as optical density values at 570 nm +/- S. E. No 

significant difference was found across all three estrogen treatments (p>0.05; Figure 6). The 

control stressed yielded an average absorbance of 0.53. Astrocytes treated with estradiol yielded 

average absorbance values ranging from 0.58 to 0.53, and there was no significant difference in 

viability of astrocytes across estradiol concentrations (F=T.61, p=0.178; Table 3, Figure 6a). 

Equilenin treatments yielded average absorbance values ranging from 0.48 to 0.63, and there was 

no significant difference in viability of astrocytes across equilenin concentrations (F=l .83, 
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p=0.127; Table 3, Figure 6b). Estradiol with equilenin treatments yielded average absorbance 

values ranging from 0.43 to 0.63, and there was no significant different across concentrations 

(F=1.9, p=0.112; Table 3, Figure 6c). 

DISCUSSION 

Although there was not a significant difference between the stressed and unstressed 

treatments, estradiol did not decrease cell viability (with the exception of 1 pM estradiol 

treatment in the epinephrine trials). Higher viability of astrocytes was not seen as concentrations 

of estradiol increased when cells were stressed with cortisol and epinephrine. Therefore, this 

hypothesis was rejected. No protection was indicated by data; therefore, hypotheses were 

rejected. If data had indicated certain estrogen treatments increased cell viability, the protection 

would have been secondary as glial cells are responsible for maintaining the blood brain barrier 

among other functions. The hypothesis that the estrogen combination 17(3-estradiol with 

equilenin will have greater cellular protection compared to cells treated with the single equilenin 

alone when the stressor is epinephrine or cortisol was rejected. The hypothesis that 17(3-estradiol 

alone will provide a better protective mechanism when the stressor is low oxygen concentration 

compared to equilenin alone and estradiol with equilenin was rejected. Additionally, the 

hypothesis that higher viability of astrocytes will be seen as concentrations of estradiol increased 

was rejected. The hypothesis that the hormone combination, 17(3-estradiol with equilenin, will 

provide the cells with greater neuronal protection as opposed to the single equilenin treatment 

when the stressor was low oxygen concentration was also rejected. No estrogen treatment 

demonstrated protective effects. All estrogen treatments yielded lower cell viability as opposed 

to the controls. Additionally, many treatments yielded significantly lower cell viability compared 

to the controls, indicating the estrogens had deleterious effects. These detrimental effects were 
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evident in higher concentrations, regardless of the presence of stressors. Previous research found 

estrogen to be detrimental as did the current study. For instance, the Women’s Health Initiative 

study found estrogens to be dangerous in increasing the incidence of cancers, especially in older 

women. Each experiment set is discussed below. 

Epinephrine 

Overall, estradiol pretreatments did not protect the human astrocytoma cell line. 

Interestingly, exposure to 1 pM estradiol resulted in reduced cell viability, regardless of 

epinephrine presence. This differs from Grimes and Hughes (2015) findings that found higher 

concentrations of estradiol provided astrocytes with more protection compared to lower 

concentrations of estradiol and controls. This also differs from Zhao and Brinton (2006) who 

found higher concentrations of endogenous estrogens (estradiol and estrone) provided significant 

neuronal protection. With the exception of 1 pM estradiol treatment in the current research, the 

astrocytes treated with estradiol did not indicate a lower absorbance in the MTT assay whereas 

higher concentrations of equilenin alone and the combination of estradiol with equilenin had 

lower absorbance indicating lower cell viability. The results did not support previous research 

that indicated 17P-estradiol provided astrocyte protection compared to cells not treated with 17(3- 

estradiol. Grimes and Hughes (2015) found lower concentrations of estradiol had lower cell 

viability compared to higher concentration of estradiol (10 pM) significantly increased cell 

viability for both stressed and unstressed astrocytes. However, Grime and Hughes (2015) used 

mouse astrocytes in their research whereas the current research used human astrocytes. Thus, 

differences in phylogenetic source of the cell lines may play a role in variation of results. The 

current research used a human cell line, which is beneficial in providing information of the 

effects estrogens have on cellular damage to women consuming estrogens. Other research 
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outside the brain have found estradiol to provide protection. For instance, May et al. (2006) 

tested the protective effects of estradiol in rat pancreatic (3-cells after recognizing the low 

prevalence of diabetes in females which suggest a sex hormones may have a role in protection of 

P-cells. This study found estradiol offered significant protection to (3-cells preventing oxidative 

injury and diabetes mellitus in both male and female rats. Thus, estradiol’s protective effects may 

be offered throughout the body and not just confined in the brain as neuroprotection. 

Additionally, May et al (2006) measured oxidative stress whereas the current research measured 

cell viability. Since 1 pM estradiol significantly decreased cell viability, but the highest 

concentration of estradiol (10 pM) did not raises further questions. Such questions include if 

these results are specific to the cell line that was used in the current research or if an unnoticed 

error occurred in the research that yielded these results. Assuming the data are correct, it can be 

hypothesized that 1 pM is detrimental to the cell line used whereas 10 pM is less detrimental 

when cells are treated with estradiol. 

The cells pretreated with equilenin, a conjugated equine estrogen, showed no protective 

mechanism compared to controls. The highest equilenin concentration, lOpM, showed a 

significant decrease in cell viability compared to controls, indicating a detrimental effect on the 

cells regardless of epinephrine treatment (Figure 4b). Although other studies found equilenin to 

provide cellular protection when cells were exposed to stressors for a short time, the current 

research did not (Grimes and Hughes 2015). Similar to this research, other studies have found 

CEEs offer less protection to cells compared to 17|3-estradiol and may impose dangers (Brunner 

et al. 2010). The results of the current research suggest high concentrations of CEEs may not 

only provide no protection to astrocytes, but may also be detrimental to cells. Thus, taking CEEs 

may be detrimental to cells in the brain. 
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Comparable to the results found when cells were treated with the high concentration of 

equilenin alone, the combination of the estrogens showed no protective mechanism against the 

epinephrine stressor. In fact, the 10 nM, 1 pM and 10 pM combination estrogen treatments had 

significantly lower cell viability regardless of epinephrine exposure compared to both controls 

(Figure 2c). The combination of estrogens used was chosen to illustrate the combination of 

estrogens that is consumed when taking HRTs that have CEEs. Elowever, Premarin has more 

estrogens than the combination used in the current study. Zhoa and Brinton (2006) found 

combined estrogen treatments to provided significant protection compared to single estrogen 

treatment when rat astrocytes were stressed with glutamate. In contrast, The Women’s Health 

Initiative study found similar results to the current research indicating CEEs may be harmful and 

combining estrogens may be detrimental to cells as well. 

Treatment of epinephrine did not affect cell viability as measured by the MTT assay. A 

higher concentration of epinephrine is released during activation of the sympathetic nervous 

system or often referred to as ‘fight or flight.’ Individuals who are stressed have higher levels of 

epinephrine in their bodies which can increase damage to astrocytes while taking CEEs (Liao et 

al. 2015). Initial research using flow cytometry with epinephrine concentrations ranging from 1 

pM to 1 mM found 100 pM to invoke the most oxidative stress. This concentration exhibited a 

higher percentage of cells undergoing oxidative stress while cell viability was consistent. The 

MTT assay used to analyze cells only indicated relative cell viability and proliferation, not 

oxidative stress as measured by flow cytometry assays. 

The concentration of estrogens chosen in this research illustrated the actual concentration 

that would be present at an in vivo level. If an individual is suddenly affected by stress, the 

sympathetic system activates, and a higher concentration of epinephrine is released. Normal 
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range of epinephrine is 10 pg/mL to 30 pg/mL, but this number increases when an individual is 

stressed (Purves et al. 2012). Thus, if a woman is taking HRT with CEEs present and is 

undergoing such stress, damage may occur to astrocytes. Since astrocytes play a significant role 

in the brain such as maintaining ion concentration and synaptic support, neurological functions 

may decrease (Purves et al. 2012). A significant decrease in viability of cells treated with 

epinephrine was not found. Consequently, in the future, a higher concentration of epinephrine or 

a different exposure time may need to be examined. 

Cortisol 

Since higher levels of cortisol are related to the body’s long-term stress exposure 

affecting overall health as well as cognitive function, 1 pM of cortisol concentration was chosen 

to mimic cortisol’s effect in vitro (Jackson et al. 2017; Cozma et al. 2017). When conducting the 

preliminary trials to determine the adequate concentration of cortisol as well as best exposure 

time that would induce stress and decrease cell viability, it was noted that cells treated with 

cortisol for four hours and twenty-four hours may have overcome stressor and thus proliferation 

continued during extended stressor exposure time (Figure 5). Thus, 1 pM of cortisol for one 

hour was chosen as the best stressor. 

Pretreatment with 17p-estradiol offered no significant cellular protection to the cortisol 

stress, regardless of concentrations. However, it was not detrimental either. Pretreatment with 

equilenin offered no significant cellular protection to the cortisol stress. The highest 

concentration, 10 pM, of equilenin alone and equilenin with estradiol had a significant lower cell 

viability regardless of cortisol exposure. These findings are similar to the epinephrine stressor. 

The results gathered from this research are important to consider for women who are considering 
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taking HRT that have non-endogenous estrogens in it. Since estradiol is naturally produced in the 

body and conjugated equine estrogens include endogenous estrogens in them as well, this 

combination treatment reflects the combination of estrogen that would be present in the body if 

an individual is taking such hormone therapy (Zhao and Brinton 2006). Additionally, the impact 

of stress may increase the cellular detrimental effects when CEEs are administered at higher 

concentrations. 

Grimes and Hughes (2015) used mouse astrocytes and hydrogen peroxide as a stressor 

with an exposure time of one hour. They found mouse astrocytes pretreated with higher 

concentrations of equilenin (100 nM, 1 pM, and 10 pM) had no significant difference between 

stressed and unstressed cultures. Their results indicate the higher concentrations of estrogens had 

greater effects on the cells than the stressor used. Their research also showed decrease cell 

viability at higher concentrations compared to controls for equilenin alone and the combination 

of equilin with equilenin. The current research partially supports these results. Higher 

concentrations with equilenin present had significantly lower cell viability. This further 

illustrates the results gathered from the trials using epinephrine as a stressor. Thus, higher 

concentrations of CEEs are neurologically harmful. To fully examine the neurological effects of 

CEEs, a cell line, such as primary astrocytes or neurons, should be examined in the future. 

Hypoxia 

A hypoxic environment was used to stress cells, a condition that mimicked a stroke in 

vitro. The current research found no significant difference across all estrogen treatments, 

indicating the estrogen treatments, alone or in combination, did not protect astrocytes. Previous 

research using different rat neurons found 17|3-estradiol offered significant neuronal protection 



www.manaraa.com

32 

compared to cells not treated with estradiol (Yousuf et al. 2014). These differences may be due 

to different cell lines. The current research used human astrocytes from a tumor whereas Yousuf 

et al. (2014) used rat neurons. The current research suggests estrogens are neither harmful nor 

helpful in protecting against a hypoxic environment. For future research, an increase in exposure 

time to a hypoxic condition may be necessary to see a greater difference across treatments 

including a decrease in viability. Additionally, measuring oxidative stress using flow cytometry 

would help better quantify the level of stress astrocytes undergo after being exposed to a hypoxic 

environment rather than only measure cell viability. Limitations such as directly measuring 

oxygen in the incubator may contribute to results gathered in the current study. Another 

constraint that exist in the current study was the limited exposure time of anoxic conditions. 

Thus, it is possible one hour exposure time was not enough to decrease cell viability where a 

significance would be observed. Thus, in the future, a longer exposure time of anoxic conditions 

should be examined. Additionally, the use of a gas chamber in the future would help measure the 

amount of oxygen directly. 

The Women’s Health Initiative study reported a positive relationship between ischemic 

stroke incidences and patients consuming CEEs. This study suggested CEEs were dangerous to 

take and detrimental to glial cells as well as possibly the individual. However, Zhao and Brinton 

(2006) found CEEs, specifically a combination of CEEs, to provide neuroprotection. Similarly, 

Grimes and Hughes (2015) reported CEEs to show an overall protective effect when astrocytes 

had exposure to hydrogen peroxide. In contrast, the current study found no significant protection 

of the CEE, equilenin, and found higher concentrations to be detrimental to cells. The fact that 

equilenin was harmful compared to estradiol alone supports results from previous research in 

vitro and in vivo. Women lack enzymes to properly metabolize equine estrogens. Thus, when 
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taken, the CEEs stay longer in the body (Hendrix et al. 2006). This is another important fact to 

consider before taking CEEs. 

Short-Term Estrogen Treatment 

It is important to emphasize that all astrocytes had only one hour of estrogen pre¬ 

treatment before toxin exposure. Consequently, this was a short-term exposure study which 

indicates the cellular harm with the higher concentrations of equilenin and equilenin with 

estradiol was not through transcriptional changes. Such changes take a longer time due to 

different gene expression pathways needed to travel. Therefore, the estrogens could be acting 

through plasma membrane receptor signaling. Additionally, alternative pathway where estrogens 

bind to receptors on the surface of the cell referred to as transmembrane G protein-coupled 

receptors may take place and activate signaling pathways (Yu et al. 2017). Once the estrogen 

binds to the receptor, conformational changes take place which activates other signaling 

pathways in the cell. These receptors can elicit faster responses compared to gene expression. It 

is known that equilenin can bind to ERa and ERp receptors like estradiol. However, there may 

be differences in binding affinities that contribute to varying results (Luo et al. 2017; Grimes and 

Hughes 2015). Studying the receptor binding would be beneficial and would require blocking 

receptors and binding assays where one could look directly at the mechanism and signaling 

taking place. While no significant cellular protection was seen in the current research, certain 

estrogens may offer protection against other health complications such as cardiovascular disease 

as previous research has suggested (Simpkins et al. 2004). This research is valuable for women 

who are considering taking CEEs and gives insights on effects of estrogens at a short-term level. 

Thus, future research on the long-term effect of estrogens would be helpful to represent women 

who consume HRT for a long time. 
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Other Estrogens 

Since estrone is most abundant (approximately 49%) compared to other estrogens in 

Premarin, it would be helpful to gain further insights on the cellular protective effects of estrone 

alone and in combination with other estrogens. Although previous research has found estrone to 

provide protection to rat neurons, using primary human astrocytes or primary human neurons 

would help better understand the effects estrogens have on women taking HRT (Zhao and 

Brinton 2006; Gatson et al. 2012). If primary neurons were examined, the preparation of the 

neuronal cultures would need astrocytes in order to survive in vitro. Thus, researching the effects 

estrogens have on primary neurons would provide great insight in the neurological effects of the 

brain when an individual consumes HRT. Examining other CEEs, such as equilin, effects in 

menopausal women would also be beneficial. Additionally, a longer-term study of the effects of 

equilenin, equilin, estrone, estradiol, pregestins, and other estrogens and hormones would be 

helpful in elucidating the neurological effects they have in the brain since there has been 

conflicting research on these estrogens and hormones (Zhoa and Brinton 2006; Brunner et al. 

2010; Mosquera et al. 2014). The differences in estrogen structures may contribute to the 

differences in results across various research using different estrogens. 

Limitations 

Although the current research gave insight to estrogen’s effect on human astrocytes, 

limitations are present which includes the cell line. While the astrocytoma cell line has the 

morphology of astrocytes, questions about the molecular changes from primary astrocytes 

remain. The next step in this research would be to use primary human astrocytes. Despite the fact 

this was an in vitro study using an astrocytoma cell line, it supports other studies and is a reason 
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to do other in vivo studies on these estrogens to examine neurological effects. Time is a sensitive 

factor when taking estrogens to protect against Alzheimer’s disease (Marriott and Wenk 2004). 

Although no significant protection was found in estrogen treatments, this study still offers 

implications for estrogens, specifically estradiol, as safer to take at lower doses compared to a 

CEE or a combination of the two at higher concentrations. Future research on primary human 

astrocytes and primary human neurons would help clarify the effects of estrogens. Much research 

has found protection in rat neurons and astrocytes, but less research has been done on primary 

human neurons (Zhao and Brinton 2006; Grimes and Hughes 2015). 

The current study initially used flow cytometry to measure the reactive oxidative species, 

cells under oxidative stress. The value of doing such assays allows better examination of cellular 

activity and effects of estrogens as well as stressor effects. Analysis of the results were not 

reported, however, due to system limitations when it came to optimizing the assay for oxidative 

stress. If this assay is optimized in the future, it could be beneficial to adding information to what 

is already known about certain estrogens protecting astrocytes as well as stressor effect. 

Additionally, it would be helpful in confirming the concentrations of the stressors used affected 

oxidative stress measurements. 

Future research 

In the future, using a higher concentration of the stressors where lower viability will be 

measurable would help examine estrogen effects. Examination of how different sex cells (male 

vs. female) from nerve tissue respond to the estrogen treatments would also help gain further 

insight on estrogen’s effects since previous research found the protective effects of estrogens to 

be sex specific. Since astrocytes are closely associated with the brain endothelial barrier, it would 
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be beneficial in examining the protective effects estrogens may have on neurons and other cell 

lines of astrocytes, such as primary astrocytes. The human astrocytes (132 INI from Sigma- 

Aldrich) did not state if they were from a male or female. Since Premarin is composed of nearly 

fifty percent estrone, future research on estrone protective effects on astrocytes would be 

beneficial since other research found estrone provided significant protection to neurons in the 

parietal cortex and hippocampus (Johnsen and Murphy 2010). Testing the affinity of binding 

receptors for each estrogen and using an estrogen receptor blocker to examine the effects of 

estrogen binding with estradiol and equilenin would help understand the different results 

gathered from each estrogen. The information gathered from this research helps further 

understand the harmful effects CEEs may have on the body when taken HRT. Questions remain 

concerning the effects estradiol and CEEs have protecting against strokes and other health 

complications in vivo. 



www.manaraa.com

37 

Table 1. Results from comparing means using a two-way ANOVA for astrocytes pretreated with 
estradiol, equilenin, and estradiol with equilenin for one hour followed by 100 pM epinephrine 
exposure for one hour. Log-transformed data are italicized. P-values < 0.05 indicate significance. 

Type of 

stressor Type of estrogen Source of Variation 

d.f 

F 

P 

(p<0.05)* 

Epinephrine Estradiol Stressor present 1 0.53 0.47 

Estrogen cone. 4 3.02 0.02* 

Stressor X estrogen 

cone. 4 0.09 0.98 

Equilenin Stressor present 1 0.33 0.57 

Estrogen cone. 4 

13.8 

9 <0.001* 

Stressor X estrogen 

cone. 4 0.7 0.6 

Estradiol+Equilenin Stressor present 1 0.02 0.89 

Estrogen cone. 4 7.66 <0.0001* 

Stressor X estrogen 

cone. 4 0.41 0.8 
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Table 2. Two-way ANOVA results for astrocytes pretreated with estradiol, equilenin, and 
estradiol with equilenin for one hour followed by 1 pM cortisol exposure for one hour. Log- 
transformed data are italicized. P-values < 0.05 indicate significance. 

Type of stressor Type of estrogen Source of Variation d.f. F P (p<0.05)* 

Cortisol Estradiol Stressor present 1 1.53 0.22 

Estrogen cone. 4 1.29 0.28 

Stressor X estrogen cone. 4 0.74 0.57 

Equilenin Stressor present 1 0.08 0.78 

Estrogen cone. 4 4.01 0.005* 

Stressor X estrogen cone. 4 1.37 0.25 

Estradiol+Equilenin Stressor present 1 0.17 0.68 

Estrogen cone. 4 9.89 <0.0001* 

Stressor X estrogen cone. 4 0.61 0.65 

Table 3. One-way ANOVA results for astrocytes pretreated with estradiol, equilenin, and 
estradiol with equilenin for one hour followed low oxygen exposure for one hour. P-values <0.05 
indicate significance. 

Type of stressor Type of estrogen Source of Variation d.f. F P 

Oxygen Estradiol Estrogen cone. 5 1.61 0.178 

Equilenin Estrogen cone. 5 1.83 0.127 

Estradiol+Equilenin Estrogen cone. 5 1.9 0.112 
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Epinephrine Estradiol 
Control 10 nM 100 nM 1 pM 10 pM 

Mean 0.2 0.66 0.91 1.13 0.74 
Standard 

Error 
019 0.21 0.21 0.21 0.19 

Table 5. Mean and standard deviation of astrocytes treated with equilenin and stressed with 
epinephrine. 

Epinephrine Equilenin 

Control 10 nM 100 nM 1 pM 10 pM 

Mean 0.92 0.68 0.66 0.66 0.164 

Standard error 0.07 0.008 0.08 0.08 0.07 

Table 6. Mean and standard deviation of astrocytes treated with a combination of estradiol and 
equilenin and stressed with epinephrine. 

Epinephrine Estradiol and Equilenin 

Control 10 nM 100 nM 1 pM 10 pM 

Mean 0.92 0.6 0.63 0.51 0.26 

Standard error 0.08 0.09 0.09 0.09 0.09 
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Table 7. Mean and standard deviation of astrocytes treated with estradiol and stressed with 
cortisol. 

Cortisol Estradiol 

Control 10 nM 100 nM 1 qM 10 qM 

Mean 0.71 0.74 0.82 0.53 0.78 

Standard 

error 0.09 0.11 0.11 0.11 0.1 

Table 8. Mean and standard deviation of astrocytes treated with equilenin and stressed with 
cortisol. 

Cortisol Equilenin 

Control 10 nM 100 nM 1 qM 10 qM 

Mean 0.71 0.68 0.77 0.67 0.45 

Standard 

error 0.09 0.11 0.11 0.1 0.01 

Table 9. Mean and standard deviation of astrocytes treated with combined estrogens and stressed 
with cortisol. 

Cortisol Estradiol + equilenin 

Control 10 nM 100 nM 1 qM 10 qM 

Mean 0.71 0.72 0.51 0.66 0.23 

Standard error 0.08 0.1 0.1 0.09 0.09 
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Fig. 1. Chemical formula of a.) Premarin, b.) Equilenin, c.) Estrone d.) 17p- 
estradiol, e.) 17a-estradiol, and f.) Prempro Adapted from National Center for 
Biotechnology Information. PubChem Compound Database retrieved from 
https://pubchem.ncbi.nlm.nih.gov/compound (accessed Nov., 5, 2017) 
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Figure 2. Chemical structure of epinephrine (left) and norepinephrine (right). 
Adapted from National Center for Biotechnology Information. PubChem 
Compound Database retrieved from 
https://pubchem.ncbi.nlm.nih.gov/compound (accessed Oct., 1, 2017). 

Figure 3. Chemical formula of cortisol. Adapted from National Center for 
Biotechnology Information. PubChem Compound Database retrieved from 
https://pubchem.ncbi.nlm.nih.gov/compound/hydrocortisone (accessed 
Oct., 1,2017). 
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Viability of Astrocytes Treated with Estradiol 
1.2 a and Stressed with Epinephrine 

Control lOnM lOOnM l(iM lOftM 

b Viability of Astrocytes Treated with Equilenin 
and Stressed with Epinephrine 

1.2 
a 

Control lOnM lOOnM l|iM 10|iM 

Figure 4. Absorbance values from MTT Assay following astrocyte pretreatment with estradiol 
and subsequent epinephrine. Astrocytes were pretreated with 17|3-estradiol (Figure 4a), equilenin 
(Figure 4b), or a combination of the two (Figure 4c) at concentrations of 10 nM, 100 nM, 1 pM, 
or 10 pM for one hour in vitro before being treated with either 100 pM epinephrine (stressed, 
black bars) or PBS control (unstressed, white bars) for one hour. Reported absorbance values 
over seven trials mean +/- S.E. (a, b, c p< 0.05). 
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Viability of Astrocytes Treated with Estradiol and 
Equilenin and Stressed with Epinephirne 

Control lOnM lOOnM l|iM 10|iM 
Figure 4. (con’d.) Absorbance values from MTT Assay following astrocyte pretreatment with 
estradiol and subsequent epinephrine. Astrocytes were pretreated with 17P-estradiol (Figure 4a), 
equilenin (Figure 4b), or a combination of the two (Figure 4c) at concentrations of 10 nM, 100 
nM, 1 pM, or 10 pM for one hour in vitro before being treated with either 100 pM epinephrine 
(stressed, black bars) or PBS control (unstressed, white bars) for one hour. Reported absorbance 
values over seven trials mean +/- S.E. (a, b, c p< 0.05). 
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Viability of Astrocytes Treated with 
Estradiol and Stressed with Cortisol 

_____ 1.8 

E 1.6 
C 
O 1.4 

in 1.2 

Control lOnM lOOnM lftM 10|iM 

□ (-) Cortisol 

■ (+) Cortisol 

Viability of Astrocytes Treated with 
Equilinen and 

E 1.8 
o 16 

Control lOnM 

Stressed with Cortisol 

a a, b 

□ (-) Cortisol 

■ (+) Cortisol 

Figure 5. Absorbance values from MTT Assay following astrocyte pretreatment with estradiol 
and subsequent cortisol. Astrocytes were pretreated with 17|3-estradiol (Figure 5a), equilenin 
(Figure 5b), or a combination of the two (Figure 5c) at concentrations of 10 nM, 100 nM, 1 pM, 
or 10 pM for one hour in vitro before being treated with either 1 pM cortisol (stressed, black 
bars) or PBS control (unstressed, white bars) for one hour. Reported absorbance values over 
seven trials mean +/- S.E. (a, b p< 0.005). 



www.manaraa.com

46 

Viability of Astrocytes Treated with Estradiol and 
Equilinen and Stressed with Cortisol 

i Hi fli I . 
Control lOnM lOOnM lfiM lOftM 

□ (-) Cortisol 

■ (+) Cortisol 

Figure 5 (con’d.) Absorbance values from MTT Assay following astrocyte pretreatment with 
estradiol and subsequent cortisol. Astrocytes were pretreated with 17|3-estradiol (Figure 5a), 
equilenin (Figure 5b), or a combination of the two (Figure 5c) at concentrations of 10 nM, 100 
nM, 1 pM, or 10 pM for one hour in vitro before being treated with either 1 pM cortisol 
(stressed, black bars) or PBS control (unstressed, white bars) for one hour. Reported absorbance 
values over seven trials mean +/- S.E. (a, b p< 0.005). 
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a 

0.8 
Viabiltiy of Astrocytes Treated with Estradiol 

and Stressed with Low Oxygen 

Control lOnM lOOnM l^M lO^M 
Concentration 

08 b Viability of Astrocytes Treated with Equileninand 
Stressed with Low Oxygen 

Control lOnM lOOnM lriM lOriM 
Concentration 

Figure 6. Absorbance values from MTT Assay following astrocyte pretreatment with estradiol 
and subsequent low oxygen concentration. Astrocytes were pretreated with 17P-estradiol (Figure 
6a), equilenin (Figure 6b), or a combination of the two (Figure 6c) at concentrations of 10 nM, 
100 nM, 1 pM, or 10 pM for one hour in vitro before exposure to a hypoxic incubator for one 
hour. Reported absorbance values over six trials mean +/- S.E. 
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Viability of Astrocytes Treated with 
Es+Eq and Stressed with Low Oxygen 

0.8 

Control lOnM lOOnM IpM 10|iM 

Concentration 

Figure 6. (con’d.) Absorbance values from MTT Assay following astrocyte pretreatment with 
estradiol and subsequent low oxygen concentration. Astrocytes were pretreated with 17P- 
estradiol (Figure 6a), equilenin (Figure 6b), or a combination of the two (Figure 6c) at 
concentrations of 10 nM, 100 nM, 1 jiM, or 10 pM for one hour in vitro before exposure to a 
hypoxic incubator for one hour. Reported absorbance values over six trials mean +/- S.E. 
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